Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Nat Immunol ; 24(6): 966-978, 2023 06.
Article in English | MEDLINE | ID: covidwho-20245297

ABSTRACT

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , BNT162 Vaccine , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , Australia/epidemiology , SARS-CoV-2 , Immunoglobulin G , Antibodies, Neutralizing , Immunity , Antibodies, Viral , Vaccination
2.
Cell Rep Med ; 4(4): 101017, 2023 04 18.
Article in English | MEDLINE | ID: covidwho-2300905

ABSTRACT

Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.


Subject(s)
COVID-19 , Hematologic Neoplasms , Humans , Receptors, Antigen, T-Cell, alpha-beta , COVID-19 Vaccines , SARS-CoV-2 , BNT162 Vaccine , CD8-Positive T-Lymphocytes
3.
JCI Insight ; 8(7)2023 04 10.
Article in English | MEDLINE | ID: covidwho-2296026

ABSTRACT

Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.


Subject(s)
COVID-19 , Pregnancy , Female , Humans , SARS-CoV-2 , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Antibodies
4.
Immunity ; 2023.
Article in English | EuropePMC | ID: covidwho-2267118

ABSTRACT

While the protective role of neutralising antibodies against COVID-19 is well-established, questions remain about the relative importance of cellular immunity. Using 6 pMHC-multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post-symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections. Graphical Our understanding of T cell responses to SARS-CoV-2 vaccination and breakthrough infection has lagged behind B cells and antibodies. Here, Koutsakos et al utilize longitudinal sampling to demonstrate rapid activation of SARS-CoV-2-specific CD4+ and CD8+ T cells during breakthrough infection. Furthermore, Spike-specific CD8+ T cell activation correlates with viral clearance.

5.
Immunity ; 56(4): 879-892.e4, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2267119

ABSTRACT

Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Breakthrough Infections , RNA, Viral , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
6.
Cell Rep Med ; 3(8): 100697, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-2276666

ABSTRACT

The current strategy to detect immunodominant T cell responses focuses on the antigen, employing large peptide pools to screen for functional cell activation. However, these approaches are labor and sample intensive and scale poorly with increasing size of the pathogen peptidome. T cell receptors (TCRs) recognizing the same epitope frequently have highly similar sequences, and thus, the presence of large sequence similarity clusters in the TCR repertoire likely identify the most public and immunodominant responses. Here, we perform a meta-analysis of large, publicly available single-cell and bulk TCR datasets from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals to identify public CD4+ responses. We report more than 1,200 αßTCRs forming six prominent similarity clusters and validate histocompatibility leukocyte antigen (HLA) restriction and epitope specificity predictions for five clusters using transgenic T cell lines. Collectively, these data provide information on immunodominant CD4+ T cell responses to SARS-CoV-2 and demonstrate the utility of the reverse epitope discovery approach.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes/chemistry , Epitopes/analysis , Humans , Receptors, Antigen, T-Cell/genetics , T-Cell Antigen Receptor Specificity
7.
Ann N Y Acad Sci ; 1521(1): 32-45, 2023 03.
Article in English | MEDLINE | ID: covidwho-2228474

ABSTRACT

Viruses infect millions of people each year. Both endemic viruses circulating throughout the population as well as novel epidemic and pandemic viruses pose ongoing threats to global public health. Developing more effective tools to address viruses requires not only in-depth knowledge of the virus itself but also of our immune system's response to infection. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Viral Immunity: Basic Mechanisms and Therapeutic Applications." This report presents concise summaries from several of the symposium presenters.


Subject(s)
Influenza, Human , Pandemics , Humans , Influenza, Human/epidemiology
8.
Viruses ; 15(2)2023 02 09.
Article in English | MEDLINE | ID: covidwho-2236018

ABSTRACT

Females often exhibit superior immune responses compared to males toward vaccines and pathogens such as influenza viruses and SARS-CoV-2. To help explain these differences, we first studied serum immunoglobulin isotype patterns in C57BL/6 male and female mice. We focused on IgG2b, an isotype that lends to virus control and that has been previously shown to be elevated in murine females compared to males. Improvements in IgG2b serum levels, and/or IgG2b ratios with other non-IgM isotypes, were observed when: (i) wildtype (WT) female mice were compared to estrogen receptor knockout mice (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all higher in WT mice), (ii) unmanipulated female mice were compared to ovariectomized mice (IgG2b/IgA was higher in unmanipulated animals), (iii) female mice were supplemented with estrogen in the context of an inflammatory insult (IgG2b and IgG2b/IgG3 were improved by estrogen supplementation), and (iv) male mice were supplemented with testosterone, a hormone that can convert to estrogen in vivo (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all improved by supplementation). We next examined data from three sets of previously described male and female human blood samples. In each case, there were higher IgG2 levels, and/or ratios of IgG2 with non-IgM isotypes, in human females compared to males. The effects of sex and sex hormones in the mouse and human studies were subtle, but frequent, suggesting that sex hormones represent only a fraction of the factors that influence isotype patterns. Examination of the gene loci suggested that upregulation of murine IgG2b or human IgG2 could be mediated by estrogen receptor binding to estrogen response elements and cytosine-adenine (CA) repeats upstream of respective Cγ genes. Given that murine IgG2b and human IgG2 lend to virus control, the isotype biases in females may be sufficient to improve outcomes following vaccination or infection. Future attention to sex hormone levels, and consequent immunoglobulin isotype patterns, in clinical trials are encouraged to support the optimization of vaccine and drug products for male and female hosts.


Subject(s)
COVID-19 , Testosterone , Humans , Female , Male , Animals , Mice , Mice, Inbred C57BL , Receptors, Estrogen , Sex Characteristics , SARS-CoV-2 , Immunoglobulin G , Estrogens , Mice, Knockout , Immunoglobulin A
10.
Immunity ; 55(7): 1299-1315.e4, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-2076210

ABSTRACT

As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Immunologic Memory , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell, alpha-beta/genetics , Spike Glycoprotein, Coronavirus
11.
Open Forum Infect Dis ; 9(10): ofac490, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2062949

ABSTRACT

Although numerous studies have evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using cycle threshold (Ct) values as a surrogate of viral ribonucleic acid (RNA) load, few studies have used standardized, quantitative methods. We validated a quantitative SARS-CoV-2 digital polymerase chain reaction assay normalized to World Health Organization International Units and correlated viral RNA load with symptoms and disease severity.

12.
Methods Mol Biol ; 2574: 309-366, 2022.
Article in English | MEDLINE | ID: covidwho-2059679

ABSTRACT

Paired- and single-chain T cell receptor (TCR) sequencing are now commonly used techniques for interrogating adaptive immune responses. TCRs targeting the same epitope frequently share motifs consisting of critical contact residues. Here we illustrate the key features of tcrdist3, a new Python package for distance-based TCR analysis through a series of three interactive examples. In the first example, we illustrate how tcrdist3 can integrate sequence similarity networks, gene-usage plots, and background-adjusted CDR3 logos to identify TCR sequence features conferring antigen specificity among sets of peptide-MHC-multimer sorted receptors. In the second example, we show how the TCRjoin feature in tcrdist3 can be used to flexibly query receptor sequences of interest against bulk repertoires or libraries of previously annotated TCRs based on matching of similar sequences. In the third example, we show how the TCRdist metric can be leveraged to identify candidate polyclonal receptors under antigenic selection in bulk repertoires based on sequence neighbor enrichment testing, a statistical approach similar to TCRNET and ALICE algorithms, but with added flexibility in how the neighborhood can be defined.


Subject(s)
Antigens , Receptors, Antigen, T-Cell , Algorithms , Epitopes
13.
Sci Adv ; 8(34): eade3956, 2022 Aug 26.
Article in English | MEDLINE | ID: covidwho-2001756

ABSTRACT

Improved adenovirus-based COVID-19 vaccines provide an important tool to combat the ever-evolving virus.

15.
PLoS One ; 17(5): e0268237, 2022.
Article in English | MEDLINE | ID: covidwho-1910639

ABSTRACT

COVID-19 remains a challenge worldwide, and testing of asymptomatic individuals remains critical to pandemic control measures. Starting March 2020, a total of 7497 hospital employees were tested at least weekly for SARS CoV-2; the cumulative incidence of asymptomatic infections was 5.64%. Consistently over a 14-month period half of COVID-19 infections (414 of 820, total) were detected through the asymptomatic screening program, a third of whom never developed any symptoms during follow-up. Prompt detection and isolation of these cases substantially reduced the risk of potential workplace and outside of workplace transmission. COVID-19 vaccinations of the workforce were initiated in December 2020. Twenty-one individuals tested positive after being fully vaccinated (3.9 per 1000 vaccinated). Most (61.9%) remained asymptomatic and in majority (75%) the virus could not be sequenced due to low template RNA levels in swab samples. Further routine testing of vaccinated asymptomatic employees was stopped and will be redeployed if needed; routine testing for those not vaccinated continues. Asymptomatic SARS-CoV-2 testing, as a part of enhanced screening, monitors local dynamics of the COVID-19 pandemic and can provide valuable data to assess the ongoing impact of COVID-19 vaccination and SARS-CoV-2 variants, inform risk mitigation, and guide adaptive, operational planning including titration of screening strategies over time, based on infection risk modifiers such as vaccination.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , Humans , Pandemics/prevention & control , SARS-CoV-2 , Workforce
16.
Nat Commun ; 13(1): 2774, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1900484

ABSTRACT

Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity , Immunoglobulin G , Immunoglobulin M , Respiratory System , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus
17.
Vaccines (Basel) ; 10(5)2022 May 20.
Article in English | MEDLINE | ID: covidwho-1875823

ABSTRACT

Longitudinal data comparing SARS-CoV-2 serology in individuals following infection and vaccination over 12 months are limited. This study compared the magnitude, decay, and variability in serum IgG, IgA, and neutralizing activity induced by natural infection (n = 218) or mRNA vaccination in SARS-CoV-2 naïve (n = 143) or experienced (n = 122) individuals over time using enzyme-linked immunosorbent assays and an in vitro virus neutralization assay. Serological responses were found to be highly variable after natural infection compared with vaccination but durable through 12 months. Antibody levels in vaccinated, SARS-CoV-2 naïve individuals peaked by 1 month then declined through 9 months, culminating in non-detectable SARS-CoV-2-specific serum IgA. Individuals with both infection and vaccination showed SARS-CoV-2-specific IgG and IgA levels that were more robust and slower to decline than the other groups; neutralizing activity remained highest in this group at 9 months past vaccination. These data reinforce the benefit of vaccination after SARS-CoV-2 recovery.

18.
mSphere ; 7(3): e0017922, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1854243

ABSTRACT

To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. Here, we describe the PARIS/SPARTA cohorts, the harmonized assays and analysis that are performed across the cohorts, as well as case definitions for SARS-CoV-2 infection and reinfection that have been established by the team of PARIS/SPARTA investigators. IMPORTANCE Determining reinfection rates and correlates of protection against SARS-CoV-2 infection induced by both natural infection and vaccination is of high significance for the prevention and control of coronavirus disease 2019 (COVID-19). Furthermore, understanding reinfections or infection after vaccination and the role immune escape plays in these scenarios will inform the need for updates of the current SARS-CoV-2 vaccines and help update guidelines suitable for the postpandemic world.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Reinfection , Seroepidemiologic Studies
19.
Clin Infect Dis ; 75(1): e705-e714, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1852985

ABSTRACT

BACKGROUND: Following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination there is significant variability between individuals in protective antibody levels against SARS-CoV-2, and within individuals against different virus variants. However, host demographic or clinical characteristics that predict variability in cross-reactive antibody levels are not well-described. These data could inform clinicians, researchers, and policymakers on the populations most likely to require vaccine booster shots. METHODS: In an institutional review board-approved prospective observational cohort study of staff at St. Jude Children's Research Hospital, we identified participants with plasma samples collected after SARS-CoV-2 infection, after mRNA vaccination, and after vaccination following infection, and quantitated immunoglobulin G (IgG) levels by enzyme-linked immunosorbent assay to the spike receptor binding domain (RBD) from 5 important SARS-CoV-2 variants (Wuhan Hu-1, B.1.1.7, B.1.351, P.1, and B.1.617.2). We used regression models to identify factors that contributed to cross-reactive IgG against 1 or multiple viral variants. RESULTS: Following infection, a minority of the cohort generated cross-reactive antibodies, IgG antibodies that bound all tested variants. Those who did had increased disease severity, poor metabolic health, and were of a particular ancestry. Vaccination increased the levels of cross-reactive IgG levels in all populations, including immunocompromised, elderly, and persons with poor metabolic health. Younger people with a healthy weight mounted the highest responses. CONCLUSIONS: Our findings provide important new information on individual antibody responses to infection/vaccination that could inform clinicians on populations that may require follow-on immunization.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunoglobulin G , Middle Aged , Prospective Studies , Spike Glycoprotein, Coronavirus , Vaccination
20.
Immunity ; 55(5): 749-780, 2022 05 10.
Article in English | MEDLINE | ID: covidwho-1838899

ABSTRACT

The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , Immunity, Innate , Immunity, Mucosal , Lung , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL